Lviv clinical bulletin 2017, 2(18)-3(19): 53-72

https://doi.org/10.25040/lkv2017.023.053

Characteristics and Features of the Circulatory System Status in Patients with Liver Cirrhosis as a Disease of Multiple Organ Lesions: Pathogenesis; Diagnostics; Principles of their Treatment (Literature Review and Clinical Case Description)

M. Farmaha, M. Abrahamovych, M. Ferko

Danylo Halytsky Lviv National Medical University

Introduction. Liver cirrhosis has a significant place among the diseases of internal organs and its comorbid syntropic lesions of the circulatory system are a common cause of disability, and often death of patients, determining the actuality, health, socio-economic importance and need for improvement of the principles of its integrated differential treatment, taking into account the state of the cardiovascular system.

Aim. To analyze the studies on frequency, pathogenesis, clinics, diagnostics and treatment of polymorbid syntropic extrahepatic lesions of the cardiovascular system in patients with liver cirrhosis published until now.

Materials and methods. We have worked on clinical research data for previous years and have analyzed a case of the disease of a particular patient who was under our observation.

Results. Diseases of a liver as a key organ of the interorgan and intersystem relationships, lead to the circulatory system disorders. It appears, first of all, by the hemodynamics disorders with the formation of stable arterial hypotension and, consequently, microcirculatory disorders, functional failure of almost all organs and also myocardial damage resulting into cirrhotic cardiomiopathy with systolic and diastolic heart failure and changes of the heart’s parameters. The study of this problem started in Cappadocien Aretacus and Claudius Galenus, but there were only isolated reports. Detailed study of this problem began in the twentieth century.

However, despite the lengthy study, today there is no there is no final answer to the questions of pathogenesis of the circulatory system lesions in patients with cirrhosis. At this moment, it is well known that cardiovascular homeostasis in patients with liver cirrhosis is associated with the presence and severity of portal hypertension and hepatocellular insufficiency, and among the molecular mechanisms the leading role is given to endothelial dysfunction with an imbalance in the system of vasoconstrictors (endothelin-1) and vasodilators (nitric oxide, carbon monoxide, hydrogen sulfide, prostacyclin, kanabioids, endogenous opioids and others), disorders in the renin-angiotensin-aldosterone system and in the autonomic nervous system. An imbalance in the mentioned system leads to the systemic vasodilation, which is the most pronounced in splanhnic vessels, causing arterial hypotension and subsequent changes in the bloodstream and in the end, leads to polyorganic failure.

These vasoactive substances are able to make the cardiodepressive effect and potentially participate in the pathogenesis of cardiomyopathy in the cirrhotic patients. Clinical signs of liver cirrhosis with the involvement into the process organs of the cardiovascularsystem is poor and, most importantly, non-specific. Most often there are no complaints or regarded as a manifestation of liver disease and the results of physical, laboratory and instrumental examination are of low information. The most specific is a high heart rate, presence of «chronotropic insufficiency», the level and daily fluctuations of blood pressure. Specific treatment of the cardiovascular system lesions in case of liver cirrhosis have been not developed till now. Treatment of such patients should be individualized, aiming at the support of myocardial function and prevention of circulatory decompensation.

Conclusions. According to a literature review the injury of a liver as a key organ of interorgan and intersystem relationships, leads to the disorders of the circulatory system and manifests with the hemodynamics violation resulting into the formation of stable arterial hypotension and myocardial damage known as cirrhotic cardiomiopathy with systolic and diastolic heart failure and changes of the parameters of the heart. However, disorders of blood flow in patients with liver cirrhosis require further elucidation of features of the pathogenetical mechanisms of its appearance, which will justify the new principles of the effective treatment of this category of critically ill patients.

References

  1. Al Hamoudi W, Lee SS. Cirrhotic cardiomyopathy. Ann Hepatol. 2005;5(3):132-139.
  2. Algahtani SA, Fouad TR, Lee SS. Cirrhotic cardiomyopathy. Semin Liver Dis. 2008;28(1):59–69. https://doi.org/10.1055/s-2008-1040321
  3. Aliluyev IH. The contractility of the myocardium with liver diseases. Sov Med. 1975;2:123-126.
  4. Angermayr B, Fernandez M, Mejias M, Gracia-Sancho J, Garcia-Pagan JC, Bosch J. NAD(P)H oxidase modulates angiogenesis and the development of portosystemic collaterals and splanchnic hyperaemia in portal hypertensive rats. Gut. 2007;56:560-564. https://doi.org/10.1136/gut.2005.088013
  5. Arkenau HT, Stichtenoth DO, Frölich JC, Manns MP, Böker KH. Elevated nitric oxide levels in patients with chronic liver disease and cirrhosis correlate with disease stage and parameters of hyperdynamic circulation. Gastroenterology. 2002;40(11):907-913. https://doi.org/10.1055/s-2002-35413
  6. Babak OY, Kolesnykova EV, Dubrov KY. Modern ideas about cirrhotic cardiomyopathy. Ukrainian Therapeutic Journal. 2009;2:102-108.
  7. Baik SK, Fouad TR, Lee SS. Cirrhotic cardiomyopathy. Orphanet J Rare Dis. 2007;2:15. https://doi.org/10.1186/1750-1172-2-15
  8. Baik SK, Lee SS. Cirrhotic cardiomyopathy: causes and consequences. J Gastroenterol Hepatol. 2004;19(1):185-190. https://doi.org/10.1111/j.1440-1746.2004.03639.x
  9. Barrière E, Tazi KA, Pessione F, Heller J, Poirel O, Lebrec D. Role of small-conductance Ca2+-dependent K+ channels in in vitro nitric oxide-mediated aortic hyporeactivity to alpha-adrenergic vasoconstriction in rats with cirrhosis. J Hepatol. 2001;35:350-357. https://doi.org/10.1016/S0168-8278(01)00141-6
  10. Barriere E, Tazi KA, Rona JP, Pessione F, Heller J, Lebrec D. Evidence for an endothelium-derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosis. Hepatology. 2000;32:935-941. https://doi.org/10.1053/jhep.2000.19290
  11. Bátkai S, Járai Z, Wagner JA, Goparaju SK, Varga K, Liu J. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827-832. https://doi.org/10.1038/89953
  12. Bernardi M, Calandra S, Colantoni A, Trevisani F, Raimondo ML, Sica G. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology. 1998;27:28-34. https://doi.org/10.1002/hep.510270106
  13. Bhathal PS, Grossman HJ. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. J Hepatol. 1985;1:325-337. https://doi.org/10.1016/S0168-8278(85)80770-4
  14. Bilfinger TV, Salzet M, Fimiani C, Deutsch DG, Tramu G, Stefano GB. Pharmacologicalevidenceforanandamideamidasein human cardiac and vascular tissues. Int J Cardiol. 1998;64(1):S15-S22. https://doi.org/10.1016/S0167-5273(98)00031-X
  15. Bobrov AN, Pavlov SV, Plyusnin SV. Etiological profile of liver cirrhosis with lethal outcome in inpatients. Rus Journal of Gastroenterology, Hepatology, Coloproctology. 2006;2:19-23.
  16. Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987;4:8-14. https://doi.org/10.1016/S0168-8278(87)80003-X
  17. Bodnar’ ZA, Makolkin VI, Aliluyev IH. The condition of the miocardium in patients with chronic liver diseases. Clinical Medicine. 1974;6:18-23.
  18. Bolognesi M, Di Pascoli M, Verardo A, Gatta A. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J Gastroenterol. 2014;20(10):2555-2563. https://doi.org/10.3748/wjg.v20.i10.2555
  19. Bolognesi M, Sacerdoti D, Piva A, Di Pascoli M, Zampieri F, Quarta S. Carbon monoxide-mediated activation of large conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. J Pharmacol Exp Ther. 2007;321:187-194. https://doi.org/10.1124/jpet.106.116665
  20. Bonz A, Laser M, Küllmer S, Kniesch S, Babin-Ebell J, Popp V. Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J Cardiovasc Pharmacol. 2003;41:657-664. https://doi.org/10.1097/00005344-200304000-00020
  21. Bosch J, Pagan G-JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol. 2000;32:141-156. https://doi.org/10.1016/S0168-8278(00)80422-5
  22. Braillon A, Cales P, Valla D, Gaudy D, Geoffroy P, Lebrec D. Influence of the degree of liver failure on systemic and splanchnic haemodynamics and on response to propranolol in patients with cirrhosis. Gut. 1986;27(10):1204-1209. https://doi.org/10.1136/gut.27.10.1204
  23. Campillo B, Bories PN, Benvenuti C, Dupeyron C. Serum and urinary nitrate levels in liver cirrhosis: endotoxemia, renal function and hyperdynamic circulation. J Hepatology. 1996;25(5):707-714. https://doi.org/10.1016/S0168-8278(96)80242-X
  24. Caramelo C, Fernandez-Mu-oz D, Santos JC, Blanchart A, Rodriguez-Puyol D, López-Novoa JM. Effect of volume expansion on hemodynamics, capillary permeability and renal function in conscious, cirrhotic rats. Hepatology. 1986;6:129-134. https://doi.org/10.1002/hep.1840060125
  25. Carey EJ, Douglas DD. Effects of orthotopic liver transplantation on the corrected QT interval in patients with end-stage liver disease. Dig Dis Sci. 2005;50:320-323. https://doi.org/10.1007/s10620-005-1603-3
  26. Chen YC, Ginès P, Yang J, Summer SN, Falk S, Russell NS. Increased vascular heme oxygenase-1 expression contributes to arterial vasodilation in experimental cirrhosis in rats. Hepatology. 2004;39:1075-1087. https://doi.org/10.1002/hep.20151
  27. Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol. 2004;287:H2316–H2323. https://doi.org/10.1152/ajpheart.00331.2004
  28. Chu CJ, Lee FY, Chang FY, Wang SS, Lin HC, Wu SL. Hyperdynamic circulation in prehepatic portal hypertension: role of tumor necrosis factor-alpha. Zhonghua Yi Xue Za Zhi (Taipei). 1997;59:145-150.
  29. Curgunlu A, Vural P, Canbaz M, Erten N, Karan MA, Tascioglu C. Plasma nitrate/nitrite and endothelin-1 in patients with liver cirrhosis. J Clin Lab Anal. 2005;19(5):177-181. https://doi.org/10.1002/jcla.20074
  30. De las Heras D, Fernández J, Ginès P, Cárdenas A, Ortega R, Navasa M. Increasedcarbon monoxide production inpatients withcirrhosis with andwithout spontaneousbacterial peritonitis. Hepatology. 2003;38:452-459. https://doi.org/10.1053/jhep.2003.50304
  31. Dehtyarova II. Diseases of the digestive system. Kyiv: Demos, 2000. 321 p.
  32. Di Pascoli M, Sacerdoti D, Pontisso P, Angeli P, Bolognesi M. Molecular Mechanisms Leading to Splanchnic Vasodilation in Liver Cirrhosis. J Vasc Res. 2017;54(2):92-99. https://doi.org/10.1159/000462974
  33. Dinda PK, Leddin DJ, Beck IT. Histamine is involved in ethanol- induced jejunal microvascular injury in rabbits. Gastroenterology. 1988;95:1227-1233. https://doi.org/10.1016/0016-5085(88)90355-1
  34. Domenicali M, Ros J, Fernández-Varo G, Cejudo-Martín P, Crespo M, Morales-Ruiz M. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut. 2005;54:522-527. https://doi.org/10.1136/gut.2004.051599
  35. Ebrahimkhani MR, Mani AR, Moore K. Hydrogen sulphide and the hyperdynamic circulation in cirrhosis: a hypothesis. Gut. 2005;54:1668-1671. https://doi.org/10.1136/gut.2004.056556
  36. Fauci E, Brownwald J, Isselbacher K et al., editors. Internal diseases by Tinsley R. Harrison. Moskow: Praktika – Mc- Grou–Hill, 2005. 491 p.
  37. Fede G, Privitera G, Tomaselli T, Spadaro L, Purrello F. Impaired cardiovascular responsiveness in liver disease. Lancet. 1975;11:382-385.
  38. Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology. 2007;46:1208-1217. https://doi.org/10.1002/hep.21785
  39. Fernández-Rodriguez CM, Romero J, Petros TJ, Bradshaw H, Gasalla JM, Gutiérrez ML. Circulating endogenous can- nabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis. Liver Int. 2004;24:477-483. https://doi.org/10.1111/j.1478-3231.2004.0945.x
  40. Filippov YO, Skyrda IY, Petrenchuk LM. The incidence of major diseases of the digestive system in Ukraine: an analytical review of the official data of the Center of Statistics of the Ministry of Health of Ukraine. Gastroenterology. 2007;38:3-15.
  41. Finucci G, Desideri A, Sacerdoti D, Bolognesi M, Merkel C, Angeli P. Left ventricular diastolic function in liver cirrhosis. Scand J Gastroenterol. 1996;31:279-284. https://doi.org/10.3109/00365529609004879
  42. Ford WR, Honan SA, White R, Hiley CR. Evidence of a novel site mediating anandamide-induced negative inotropic and coronary vasodilatator responses in rat isolated hearts. J Pharmacol. 2002;135:191-198. https://doi.org/10.1038/sj.bjp.0704565
  43. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597-601. https://doi.org/10.1038/21218
  44. Gabler G. Myokardose – myokarditis. Morphologie und Pathogenese. Jena VEB G. Fischer, 1965. 120 p.
  45. Gandhi CR, Sproat LA, Subbotin VM. Increased hepatic endothelin-1 levels and endothelin receptor density in cirrhotic rats. Life Sci. 1996;58:55-62. https://doi.org/10.1016/0024-3205(95)02255-4
  46. Garcia-Tsao G. Bacterial translocation: Cause or consequence ґof decompensation in cirrhosis? J Hepatol. 2001;34:150- 155. https://doi.org/10.1016/S0168-8278(00)00006-4
  47. Gaskari SA, Liu H, Moezi L, Li Y, Baik SK, Lee SS. Role of endocannabinoids in the pathogenesis of cirrhotic cardiornyopathy in bile duct-ligated rats. Br J Pharmacol. 2005;146:315-323. https://doi.org/10.1038/sj.bjp.0706331
  48. Gassanov N, Semmo N, Semmo M, Nia AM, Fuhr U, Er F. Arginine vasopressin (AVP) and treatment with arginine vasopressin receptor antagonists (vaptans) in congestive heart failure, liver cirrhosis and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Eur J Clin Pharmacol. 2011;67(4):333-346. https://doi.org/10.1007/s00228-011-1006-7
  49. Genesca J, Gonzalez A, Catalan R, Segura R, Martinez M, Esteban R. Adrenomedullin, a vasodilator peptide implicated in hemodynamic alterations of liver cirrhosis: relationship to nitric oxide. Dig Dis Sci. 1999;44:372-376. https://doi.org/10.1023/A:1026618904493
  50. Gentilini P, Romanelli RG, Laffi G, Barletta G, Del Bene R, Messeri G. Cardiovascular and renal function in normotensive and hypertensive patients with compensated cirrhosis: effects of posture. J Hepatol. 1999;30:632-638. https://doi.org/10.1016/S0168-8278(99)80193-7
  51. Gerbes AL, Møller S, Gülberg V, Henriksen JH. Endothelin-1 and -3 plasma concentrations in patients with cirrhosis: Role of splanchnic and renal passage and liver function. Hepatology. 1995;21(3):735-739.
  52. Ginеs P, Martin PY, Niederberger M. Prognostic significance of renal dysfunction in cirrhosis. Kidney Int Suppl. 1997;61:S77-S82.
  53. Gould L, Shariff M, Zahir M, Di Lieto M. Cardiac hemodynamics in alcoholic patients with chronic liver disease and a presystolic gallop. J Clin Invest. 1969;48:860-868. https://doi.org/10.1172/JCI106044
  54. Graupera M, García-Pagán JC, Abraldes JG, Peralta C, Bragulat M, Corominola H. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology. 2003;37:172-181. https://doi.org/10.1053/jhep.2003.50004
  55. Graupera M, García-Pagán J-C, Titos E. 5-lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology. 2002;122:387-393. https://doi.org/10.1053/gast.2002.31040
  56. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39:S125-S130. https://doi.org/10.1097/01.mcg.0000155552.14396.3d
  57. Groszmann RJ, de Francis R; Schiff E, Madrey W, Sorel JB. Portal Hypertension. Shiff’s Diseases of the Liver. Philadelphia: Loppincott Williams and Wilkins, 1999. 138 p.
  58. Groszmann RJ, Vorobioff J, Riley E. Splanchnic hemodynamics inportal hypertensive rats: measurement with gamma-labeled microspheres. Am J Physiol. 1982;242:G156–G160.
  59. Groszmann RJ. Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences. Hepatology. 1994;20:1359-1363. https://doi.org/10.1002/hep.1840200538
  60. Guarner C, Soriano G, Such J, Teixidó M, Ramis I, Bulbena O. Systemic prostacyclin in cirrhotic patients. Relationship with portal hypertension and changes after intestinal decontamination. Gastroenterology. 1992;102:303-309. https://doi.org/10.1016/0016-5085(92)91814-K
  61. Guercio LR, Commaraswamy RP, Feins NR. Pulmonary arterio-venous admixture and the hyperdynamic cardiovascular state in surgery for portal hypertension. Surgery. 1964;56:57-74.
  62. Guevara M, Ginès P, Jiménez W, Sort P, Fernández-Esparrach G, Escorsell A. Increased adrenomedullin levels in cirrhosis: relationship with hemodynamic abnormalities and vasoconstrictor systems. Gastroenterology. 1998;114(2):336-343. https://doi.org/10.1016/S0016-5085(98)70486-X
  63. Guo S-B, Duan Z-J, Wang Q-M, Zhou Q, Li Q, Sun Q-Y. Endogenous carbon monoxide downregulates hepatic cystathionine-γ-lyase in rats with liver cirrhosis. Exp Ther Med. 2015;10(6):2039-2046. https://doi.org/10.3892/etm.2015.2823
  64. Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998;28:926-931. https://doi.org/10.1002/hep.510280405
  65. Handzha IM. Cardiovascular system in diseases of the liver and biliary tract. Kyiv: Zdorov’ya, 1961. 188 p.
  66. Hansen S, Møller S, Bendtsen F, Jensen G, Henriksen JH. Diurnal variation and dispersion in QT interval in cirrhosis: relation to aemodynamic changes. J Hepatol. 2007;47:373-380. https://doi.org/10.1016/j.jhep.2007.03.013
  67. Harbuzenko DV. Multiorgan hemodynamic disorders in liver cirrhosis. Therapeutic Archive. 2007;2:73-77.
  68. Harchenko NV. Chronic hepatitis: achievements, unsolved problems. Modern Gastroenterology and Hematology. 2000;1:50-54.
  69. Hennenberg M, Trebicka J, Biecker E, Schepke M, Sauerbruch T, Heller J. Vascular dysfunction in human and rat cirrhosis: role of receptor-desensitizing and calcium-sensitizing proteins. Hepatology. 2007;45:495-506. https://doi.org/10.1002/hep.21502
  70. Henriksen JH, Bendtsen F, Hansen EF. Acute non-selective beta-adrenergic blockade reduces prolonged frequency adjusted Q-T interval (QTc) in patients with cirrhosis. J Hepatol. 2004;40:239-246. https://doi.org/10.1016/j.jhep.2003.10.026
  71. Henriksen JH, Gøtze JP, Fuglsang S, Christensen E, Bendtsen F, Møller S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut. 2003;52:1511-1517. https://doi.org/10.1136/gut.52.10.1511
  72. Henriksen JH, Møller S. Haemodynamics and fluid retention in liver disease. Ital J Gastroenterol Hepatol. 1998;30(3):320- 332.
  73. Henriksen JH, Møller S. Liver cirrhosis and arterial hypertension. World J Gastroenterol. 2006;12(5):678-685. https://doi.org/10.3748/wjg.v12.i5.678
  74. Henriksen JH, Ring-Larsen H, Christensen NJ. Aspects of sympathetic nervous system regulation in patients with cirrhosis: a 10-year experience. Clin Physiol. 1991;11:293-306. https://doi.org/10.1111/j.1475-097X.1991.tb00658.x
  75. Henriksen JH, Ring-Larsen H. Hepatorenal disorders: role of the sympathetic nervous system. Semin Liver Dis. 1994;14:35-43. https://doi.org/10.1055/s-2007-1007296
  76. Horbatenko VP, Chechulin AS, Men’shykov VV. Determination of the content of biogenic amines in portal hypertension in the clinic and experiment. Therapeutic Archive. 1967;1:66-72.
  77. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophysic Res Commun. 1997;237:527-531. https://doi.org/10.1006/bbrc.1997.6878
  78. Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol. 2013;19(11):1707-1717. https://doi.org/10.3748/wjg.v19.i11.1707
  79. Ignarro LJ, Byrns RE, Wood KS. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ Res. 1987;60:82-92. https://doi.org/10.1161/01.RES.60.1.82
  80. Inserte J, Perelló A, Agulló L, Ruiz-Meana M, Schlüter KD, Escalona N. Left ventricular hypertrophy in rats with biliary cirrhosis. Hepatology. 2003;38:589-598. https://doi.org/10.1053/jhep.2003.50369
  81. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver disease: from the patient to the molecule. Hepatology. 2006;43(1):121-131. https://doi.org/10.1002/hep.20993
  82. Iwakiri Y. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin Mol Hepatol. 2015;21(4):319- 325. https://doi.org/10.3350/cmh.2015.21.4.319
  83. Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, E S, Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparkes to Ca2+ activated K+ channels. Circ Res. 2002;91:610-617. https://doi.org/10.1161/01.RES.0000036900.76780.95
  84. Kamath PS, Carpenter HA, Lloyd RV, McKusick MA, Steers JL, Nagorney DM. Hepatic localization of endothelin-1 in patients with idiopathic portal hypertension and cirrhosis of the liver. Liver Transpl. 2000;6(5):596-602. https://doi.org/10.1053/jlts.2000.9735
  85. Kelbaek H, Eriksen J, Brynjolf I, Raboel A, Lund JO, Munck O. Cardiac performance in patients with asymptomatic alcoholic cirrhosis of the liver. Am J Cardiol. 1984;54:852-855. https://doi.org/10.1016/S0002-9149(84)80220-9
  86. Kiszka-Kanowitz M, Henriksen JH, Moller S, Bendtsen F. Blood volume distribution in patients with cirrhosis: aspects of the dual-head gamma-camera technique. J Hepatol. 2001;35:605-612. https://doi.org/10.1016/S0168-8278(01)00175-1
  87. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun. 1993;194(2):720-725. https://doi.org/10.1006/bbrc.1993.1881
  88. Koch DG, Bogatkevich G, Ramshesh V, Lemasters JJ, Uflacker R, Reuben A. Elevated levels of endothelin-1 in hepatic venous blood are associated with intrapulmonary vasodilatation inhumans. Dig Dis Sci. 2012;57(2):516-523. https://doi.org/10.1007/s10620-011-1905-6
  89. Kohro S, Imaizumi H, Yamakage M, Masuda Y, Namiki A, Asai Y. Anandamide absorption by direct hemoperfusion with polymixin B-immobilized fiber improves the prognosis and organ failure assessment score in patients with sepsis. J Anesth. 2006;20:11-16. https://doi.org/10.1007/s00540-005-0366-5
  90. Kojima H, Tsujimoto T, Uemura M, Takaya A, Okamoto S, Ueda S. Significance of increased plasma adrenomedullin concentration in patients with cirrhosis. J Hepatology. 1998;28(5):840-846. https://doi.org/10.1016/S0168-8278(98)80235-3
  91. Kowalski HJ, Abelmann WH. Cardiac output at rest in Laennec’s cirrhosis. J Clin Invest. 1953;32:1025-1033. https://doi.org/10.1172/JCI102813
  92. Kuntzen Сh, Gülberg V, Gerbes al. Use of a mixed endothelin receptor antagonist in portopulmonary hypertension: A safe and effective therapy. Gastroenterology. 2005;128(1):164-168. https://doi.org/10.1053/j.gastro.2004.09.005
  93. Lavi-a B, Gracia-Sancho J, Rodríguez-Vilarrupla A, Chu Y, Heistad DD, Bosch J. Superoxide dismutase gene transfer reduces portal pressure in CCl4 cirrhotic rats with portal hypertension. Gut. 2009;58:118-125. https://doi.org/10.1136/gut.2008.149880
  94. Lebrec D, Bataille C, Bercoff E, Valla D. Hemodynamic changes in patients with portal venous obstruction. Hepatology. 1983;3(4):550-553. https://doi.org/10.1002/hep.1840030412
  95. Lee RF, Glenn TK, Lee SS. Cardiac dysfunction in cirrhosis. Best Pract Res Clin Gastroenterol. 2007;21:125-140. https://doi.org/10.1016/j.bpg.2006.06.003
  96. Lee SS, Marty J, Mantz J, Samain E, Braillon A, Lebrec D. Desensitization of myocardial beta-adrenergic receptors in cirrhotic rats. Hepatology. 1990;12:481-485. https://doi.org/10.1002/hep.1840120306
  97. Lee SS. Cardiac abnormalities in liver cirrhosis. West J Med. 1989;151:530-535.
  98. Levy M, Maher E, Wexler MJ. Euvolemic cirrhotic dogs in sodium balance maintain normal systemic hemodynamics. Canad J Physiol Pharmacol. 1988;66(1):80-83. https://doi.org/10.1139/y88-015
  99. Limas CJ, Guiha NH, Lekagul O, Cohn JN. Impaired left ventricular function in alcoholic cirrhosis with ascites: ineffectiveness of ouabain. Circulation. 1974;49(4):754-760. https://doi.org/10.1161/01.CIR.49.4.755
  100. Lin HC, Yang YY, Huang YT, Lee TY, Hou MC, Lee FY. Vascular contractile response and signal transduction in endothelium-denuded aorta from cirrhotic rats. World J Gastroenterol. 2005;11:2306-2312. https://doi.org/10.3748/wjg.v11.i15.2306
  101. Liu H, Lee SS. Cardiopulmonary dysfunction in cirrhosis. J Gastroenterol Hepatol. 1999;14:600-608. https://doi.org/10.1046/j.1440-1746.1999.01920.x
  102. Liu H, Lee SS. What happens to cirrhotic cardiomyopathy after liver transplantation? Hepatology. 2005;42:1203-1205. https://doi.org/10.1002/hep.20911
  103. Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile ductligated rats. Gastroenterology. 2000;118:937-944. https://doi.org/10.1016/S0016-5085(00)70180-6
  104. Liu H, Song D, Lee SS. Cirrhotic cardiomyopathy. Gastroenterol Clin Biol. 2002;26(10):842-847.
  105. Liu H, Song D, Lee SS. Role of heme oxygenasecarbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat. Am J Physiol Gastrointest Liver Physiol. 2001;280:68-74.
  106. Lopez-Talavera JC1, Cadelina G, Olchowski J, Merrill W, Groszmann RJ. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology. 1996;23:1616-1621. https://doi.org/10.1053/jhep.1996.v23.pm0008675185
  107. Lotfy M, El-Kenawy Ael-M, Abdel-Aziz MM, El-Kady I, Talaat A. Elevated renin levels in patients with liver cirrhosis and hepatocellular carcinoma. Asian Pac J Cancer Prev. 2010;11(5):1263-1266.
  108. Loureiro-Silva MR, Cadelina GW, Groszmann RJ. DeĎcit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. Am J Physiol Gastrointest Liver Physiol. 2003;284:G567-G574. https://doi.org/10.1152/ajpgi.00452.2002
  109. Lugo-Baruqui A, Mu-oz-Valle JF, Arévalo-Gallegos S, Armendáriz-Borunda J. Role of angiotensin II in liver fibrosis-induced portal hypertension and therapeutic implications. J Hepatol Res. 2010;40(1):95-104. https://doi.org/10.1111/j.1872-034X.2009.00581.x
  110. Lunseth JH, Olmstead EG, Assound FA. A study of heart disease in one hundred eight hospitalized patients dyringew3 with portal cirrhosis. Arch Intern Med. 1958;102(3):405-413. https://doi.org/10.1001/archinte.1958.00030010405009
  111. Lunseth JH. Cardiac hypertrophy in rats with carbon tetrachloride cirrhosis. Arch Pathol. 1965;79:644-646.
  112. Ma Z, Lee SS. Cirrhotic cardiomyopathy: getting to the heart of the matter. Hepatology. 1996;24(2):451-459. https://doi.org/10.1002/hep.510240226
  113. Ma Z. Management of cirrhotic cardiomyopathy. Medical Management of Liver Disease. New-York: Marcel Dekker, 1999. 583-589.
  114. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem. 1999;274:22903-22906. https://doi.org/10.1074/jbc.274.33.22903
  115. Martin PY, Xu DL, Niederberger M, Weigert A, Tsai P, St John J. Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol. 1996;270:F494-499.
  116. McCormack TT, Sims J, Eyre-Brook I, Kennedy H, Goepel J, Johnson AG. Gastric lesions in portal hypertension: Inflammatory gastritis or congestive gastropathy? Gut. 1985;26:1226-1232. https://doi.org/10.1136/gut.26.11.1226
  117. Mehtiyeva OA. Features of the state of the cardiovascular system in patients with chronic hepatitis, depending on the stage of the disease and the degree of portal hypertension [dissertation]. SPb, 2002. 28 p.
  118. Michell BJ, Griffiths JE, Mitchelhill KI, Rodriguez-Crespo I, Tiganis T, Bozinovski S. The Akt kinase signals directly to endothelial nitric oxide synthase. Curr Biol. 1999;9:845-848. https://doi.org/10.1016/S0960-9822(99)80371-6
  119. Mikulic E, Mu-oz C, Puntoni LE, Lebrec D. Hemodynamic effects of dobutamine in patients with alcoholic cirrhosis. Clin Pharmacol Ther. 1983;34:56-59. https://doi.org/10.1038/clpt.1983.129
  120. Mittal MK, Gupta TK, Lee FY, Sieber CC, Groszmann RJ. Nitric oxide modulates hepatic vascular tone in normal rat liver. Am J Physiol. 1994;267:G416-G422.
  121. Miсano C, Garcia-Tsao G. Portal Hypertension. Gastroenterol Clin North Amer. 2010;39(3):681-695. https://doi.org/10.1016/j.gtc.2010.08.015
  122. Moezi L, Ebrahimkhani MR, Kiani S, Karoon A, Farsam H, Dehpour AR. Endogenous opioid system modulates mesenteric bed responsiveness in cirrhotic rats. J Hepatol. 2004;40:93-94. https://doi.org/10.1016/S0168-8278(04)90305-4
  123. Moezi L, Gaskari SA, Liu H, Baik SK, Dehpour AR, Lee SS. Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB(1) and VR(1) receptors. Br J Pharmacol. 2006;149:898-908. https://doi.org/10.1038/sj.bjp.0706928
  124. Moezi L, Mehr ShM, Dehpour AR. Cardiovascular Abnormalities in Cirrhosis: the Possible Mechanisms. J Teh Univ Heart. Ctr. 2007;4:191-200.
  125. Mohamed R, Forsey PR, Davies MK, Neuberger JM. Effect of liver transplantation on QT interval prolongation and autonomic dysfunction in end-stage liver disease. Hepatology. 1996;23:1128-1134. https://doi.org/10.1002/hep.510230529
  126. Møller S, Bendtsen F, Henriksen JH. Determinants of the renin-angiotensin-aldosterone system in cirrhosis with special emphasis on the central bloodvolume. Scand J Gastroenterol. 2006;41(4):451-458. https://doi.org/10.1080/00365520500292962
  127. Møller S, Bendtsen F, Henriksen JH. Effect of volume expansion on systemic hemodynamicsand centralandarterialblood hemodynamics and central and arterial blood volume in cirrhosis. Gastroenterology. 1995;109:1917-1925. https://doi.org/10.1016/0016-5085(95)90759-9
  128. Møller S, Bendtsen F, Henriksen JH. Vasoactive substances in the circulatory dysfunction of cirrhosis. Scand J Clin Lab Invest. 2001;61:421-499. https://doi.org/10.1080/00365510152567059
  129. Møller S, Gülberg V, Henriksen JH, Gerbes AL. Endothelin-1 and endothelin-3 in cirrhosis: relations to systemic and splanchnic haemodynamics. J Hepatol. 1995;23:135-144. https://doi.org/10.1016/0168-8278(95)80327-0
  130. Moller S, Henriksen JH, Bendtsen F. Central and noncentral blood volumes in cirrhosis: relationship to anthropometrics and gender. Am J Physiol Gastrointest Liver Physiol. 2003;284:G970-979. https://doi.org/10.1152/ajpgi.00521.2002
  131. Møller S, Henriksen JH. Cardiovascular complications of cirrhosis. Gut. 2008;57:268-278. https://doi.org/10.1136/gut.2006.112177
  132. Møller S, Henriksen JH. Circulatory abnormalities in cirrhosis with focus on neurohumoral aspects. Semin Nephrol. 1997;17(6):505-519.
  133. Møller S, Wiinberg N, Henriksen JH. Noninvasive 24-hour ambulatory arterial blood pressure monitoring in cirrhosis. Hepatology. 1995;22(1):88-95.
  134. Morhunov HA, Strelzova HP, Prohov MY. Regional and general circulatory disorders in portal hypertensio. Novosibirsk: Nauka, 1987. 191 p.
  135. Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cellderived carbon monoxide is a regulator of vascular Cgmp. Proc Natl Acad Sci USA. 1995;92:1475-1479. https://doi.org/10.1073/pnas.92.5.1475
  136. Morozova EI, Filev AP, Hovorin AV. Cardiohemodynamic disorders in patients with post-cirrhosis of the liver. Far Eastern Medical Journal. 2013;2:27-30.
  137. Munshi MK, Uddin MN, Glaser SS. The role of the renin-angiotensin system in liver fibrosis. Exp Biol Med. (Maywood). 2011;236(5):557-566. https://doi.org/10.1258/ebm.2011.010375
  138. Murray JF, Dawson AM, Sherlock S. Circulatory changes in chronic liver disease. Am J Med. 1958;24:358-367. https://doi.org/10.1016/0002-9343(58)90322-X
  139. Myers RP, Lee SS. Cirrhotic cardiomyopathy and liver transplantation. Liver Transpl. 2000;6(4):P. S44-S52. https://doi.org/10.1002/lt.500060510
  140. Nagano T, Yamamoto K, Matsumoto S, Okamoto R, Tagashira M, Ibuki N. Cytokine profile in the liver of primary biliary cirrhosis. J Clin Immunol. 1999;19:422-427. https://doi.org/10.1023/A:1020511002025
  141. Neef M, Biecker E, Heller J, Schepke M, Nischalke HD, Wolff M. Portal hypertension is associated with increased mRNA levels of vasopressor G-protein-coupled receptors in human hepatic arteries. Eur J Clin Invest. 2003;33:249-255. https://doi.org/10.1046/j.1365-2362.2003.01131.x
  142. Nicholls KM, Shapiro MD, Van Putten VJ, Kluge R, Chung HM, Bichet DG. Elevated plasma norepinephrine concentrations in decompensated cirrhosis. Association with increased secretion rates, normal clearance rates, and suppressibility by central blood volume expansion. Circ Res. 1985;56:457-461. https://doi.org/10.1161/01.RES.56.3.457
  143. Nishimatsu H, Suzuki E, Nagata D, Moriyama N, Satonaka H, Walsh K. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res. 2001;89:63-70. https://doi.org/10.1161/hh1301.092498
  144. Ocel JJ, Edwards WD, Tazelaar HD, Petrovic LM, Edwards BS, Kamath PS. Heart and liver disease in 32 patients undergoing biopsy of both organs, with implications for heart or liver transplantation. Mayo Clin Proc. 2004;79:492-450. https://doi.org/10.4065/79.4.492
  145. Odeh M, Sabo T, Srugo I, Oliven A. Serum levels of tumor necrosis factor-alpha correlate with severity of hepatic encephalopathy due to chronic liver fare. Liver Int. 2004;24:110-116. https://doi.org/10.1111/j.1478-3231.2004.0894.x
  146. Pacher P, Batkai S, Kunos G. Cirrhosis cardiomyopathy: an endocannabinoid connection? Br J Pharmacol. 2005;146:313- 314. https://doi.org/10.1038/sj.bjp.0706332
  147. Pateron D, Beyne P, Laperche T, Logeard D, Lefilliatre P, Sogni P. Elevated circulating cardiac troponin I in patients with cirrhosis. Hepatology. 1999;29:640-643. https://doi.org/10.1002/hep.510290332
  148. Pentyuk NO, Harchenko NV. The role of endotoxin and vasoactive metabolites in the development of decompensation of liver cirrhosis. Hepatology. 2010;3:32-40.
  149. Pereira RM, dos Santos RA, da Costa Dias FL. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J Gastroenterology. 2009;15(21):2579-2586. https://doi.org/10.3748/wjg.15.2579
  150. Pozzi M, Carugo S, Boari G, Pecci V, de Ceglia S, Maggiolini S. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology. 1997;26:1131-1137.
  151. Pozzi M, Grassi G, Ratti L, Favini G, Dell’Oro R, Redaelli E. Cardiac, neuroadrenergic, and portal hemodynamic effects of prolonged aldosterone blockade in postviral child A cirrhosis. Am J Gastroenterol. 2005;100:1110-1116. https://doi.org/10.1111/j.1572-0241.2005.41060.x
  152. Qingyou Z, Junbao D, Weijin Z, Hui Y, Chaoshu T, Chunyu Z. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun. 2004;317:30-37. https://doi.org/10.1016/j.bbrc.2004.02.176
  153. Raaschou F. Blood pressure and heart weight in chronic hepatitis. Does the liver play a role in the development of essential hypertension? Nord Med. 1949;46:1791-1795.
  154. Radvan M, Svoboda P, Radvanová J. Brain natriuretic peptide in decompensation of liver cirrhosis in non-cardiac patients. Hepatogastroenterology. 2009;56(89):181-185.
  155. Rasaratnam B, Kaye D, Jennings G, Dudley F, Chin-Dusting J. The effect of selective intestinal decontamination on the hyperdynamiccirculatory state in cirrhosis. A randomized trial. Ann Intern Med. 2003;139:186-193. https://doi.org/10.7326/0003-4819-139-3-200308050-00008
  156. Regan TJ, Levinson GE, Oldewurtel HA. Ventricular functioninnon cardiacs with alcoholic fatty liver: role of ethanol in the production of cardiomyopathy. J Clin Invest. 1969;48:397-407. https://doi.org/10.1172/JCI105997
  157. Ros J, Clària J, To-Figueras J, Planagumà A, Cejudo-Martín P, Fernández-Varo G. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology. 2002;122:85-93. https://doi.org/10.1053/gast.2002.30305
  158. Schepke M, Heller J, Paschke S, Thomas J, Wolff M, Neef M. Contractile hyporesponsiveness of hepatic arteries in humans with cirrhosis: evidence for a receptor-specic mechanism. Hepatology. 2001;34:884-888. https://doi.org/10.1053/jhep.2001.28794
  159. Schrier RW. Use of diuretics in heart failure and cirrhosis. Semin Nephrol. 2011;31(6):503-512. https://doi.org/10.1016/j.semnephrol.2011.09.005
  160. Serhiyeni OV, Panina SS, Voytchak TH. Epidemiological aspects and causes of disability due to chronic hepatitis. Gastroenterology: Interdepartmental compilation. 2007;38:26-32.
  161. Shah V, Toruner M, Haddad F, Cadelina G, Papapetropoulos A, Choo K. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999;117:1222-1228. https://doi.org/10.1016/S0016-5085(99)70408-7
  162. Shastyn NN, Vylenchuk RE. Histamine content in acute epidemic hepatitis. Sov Med. 1972;6:143-144.
  163. Sherlock S. Vasodilatation associated with hepatocellular disease: relation to functional organ failurе. Gut. 1990;31:365-367. https://doi.org/10.1136/gut.31.4.365
  164. Shozawa T, Otsu S. Pathology of the myocardium in cases of chronic liver disease. Jap Circulation. 1964;28:163-170. https://doi.org/10.1253/jcj.28.163
  165. Shypulin VP. Liver Cirrhosis: Therapy Issues. Medical case. 2007;1-2:36-40.
  166. Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr, Francis GS. BNP Consensus Panel. BNP Consensus Panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail. 2004;10(3):1-30. https://doi.org/10.1111/j.1527-5299.2004.03271.x
  167. Sitzmann JV, Campbell K, Wu Y, St Clair C. Prostacyclin production in acute, chronic, and long-term experimental portal hypertension. Surgery. 1994;115:290-294.
  168. Spatt SD, Rosenblatt P. The incidence of hypertension in portal cirrhosis: a study of 80 necropsied cases of portal cirrhosis. Ann Int Med. 1949;31:479-483. https://doi.org/10.7326/0003-4819-31-3-479
  169. Stadlbauer V, Wright GA, Banaji M, Mukhopadhya A, Mookerjee RP, Moore K. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology. 2008;134(1):111-119. https://doi.org/10.1053/j.gastro.2007.10.055
  170. Suematsu M, Wakabayashi Y, Ishimura Y. Gaseous monoxides: a new class of microvascular regulator in the liver. Cardiovasc Res. 1996;32:679-686. https://doi.org/10.1016/S0008-6363(96)00109-5
  171. Suman A, Barnes DS, Zein NN, Levinthal GN, Connor JT, Carey WD. Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of ChilddPugh and MELD scores. Clin Gastroenterol Hepatol. 2004;2:719-723. https://doi.org/10.1016/S1542-3565(04)00296-4
  172. Sumanovski LT, Battegay E, Stumm M, van der Kooij M, Sieber CC. Increased angiogenesis in portal hypertensive rats: role of nitric oxide. Hepatology. 1999;29:1044-1049. https://doi.org/10.1002/hep.510290436
  173. Sztrymf B, Rabiller A, Nunes H, Savale L, Lebrec D, Le Pape A Prevention of hepatopulmonary syndrome and hyperdynamic state by pentoxifylline in cirrhotic rats. Eur Respir J. 2004;23:752-758. https://doi.org/10.1183/09031936.04.00080404
  174. Tam J, Liu J, Mukhopadhyay B, Cinar R, Godlewski G, Kunos G. Endocannabinoids in Liver Disease. Hepatology. 2011;53(1):346-355. https://doi.org/10.1002/hep.24077
  175. Tamylevichyute DI, Vitanas AM. Diseases of the esophagus and cardia. Мoskov: Medicyna, 1986. 224 p.
  176. Therapondos G, Flapan AD, Plevris JN, Hayes PC. Cardiac morbidity and mortality related to orthotopic liver transplantation. Liver Transpl. 2004;10:1441-1453. https://doi.org/10.1002/lt.20298
  177. Thornton JR, Losowsky MS. Plasma leucine enkephalin is increased in liver disease. Gut. 1989;30:1392-1395. https://doi.org/10.1136/gut.30.10.1392
  178. Torregrosa M, Aguadé S, Dos L, Segura R, Gónzalez A, Evangelista A. Cardiac alterations in cirrhosis: reversibility after liver transplantation ZCardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42:68-74. https://doi.org/10.1016/j.jhep.2004.09.008
  179. Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overpro- duction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003;125:1452-1461. https://doi.org/10.1016/j.gastro.2003.07.014
  180. Tsai MH. Splanchnic and systemic vasodilatation: the patient. J Clin Gastroenterol. 2007;41(3):S266-S271. https://doi.org/10.1097/MCG.0b013e3181576d1a
  181. Tsivenko OI. Condition of cardioghemodynamics and metabolic disorders in chronic liver disease of alcoholic genesis in the dynamics of treatment [dissertation]. Kharkiv, 2002. 21 p.
  182. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990-994. https://doi.org/10.1038/40187
  183. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest. 1997;100:2793-2799. https://doi.org/10.1172/JCI119826
  184. Van de Casteele M, Omasta A, Janssens S, Roskams T, Desmet V, Nevens F. In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats. Gut. 2002;51:440-445. https://doi.org/10.1136/gut.51.3.440
  185. Voloshyn OI, Prysyazhnyuk VP, Prysyazhnyuk PV. Defeat of the cardiovascular system in patients with cirrhosis of the liver not of viral origin. Clinical and Experimental Pathology. 2009;8:106-110.
  186. Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenanceof chronic portal hypertension. Am J Physiol. 1983;244:G52-G57.
  187. Ward СA, Liu H, Lee SS. Altered cellular calcium regulatory systems in a rat model of cirrhotic cardiomyopathy. Gastroenterology. 2001;121:1209-1218. https://doi.org/10.1053/gast.2001.28653
  188. Wereszczynka-Siemiatkowska U, Swidnicka-Siergiejko A, Siemiatkowski A, Bondyra Z, Wasielica-Berger J, Mroczko B. Endothelin 1 and transforming growth factor-β1 correlate with liver function and portal pressure in cirrhotic patients. Cytokine. 2015;76(2):144-151. https://doi.org/10.1016/j.cyto.2015.05.025
  189. Wiest R, Cadelina G, Milstien S, McCuskey RS, Garcia-Tsao G, Groszmann RJ. Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats. Hepatology. 2003;38:1508-1515. https://doi.org/10.1016/j.hep.2003.09.039
  190. Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol. 1999;276:G1043-G1051.
  191. Wiest R. Splanchnic and systemic vasodilation: the experimental models. J Clin Gastroenterol. 2007;41(3):S272-S287. https://doi.org/10.1097/MCG.0b013e318157cb57
  192. Woitas RP, Heller J, Stoffel-Wagner B, Spengler U, Sauerbruch T. Renal functional reserve and nitric oxide in patients with compensated liver cirrhosis. Hepatology. 1997;26:858-864. https://doi.org/10.1002/hep.510260409
  193. Wong F, Liu P, Lilly L, Bomzon A, Blendis L. Role of cardiac structural and functional abnormalities in the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin Sci (Lond.). 1999;97:259-267. https://doi.org/10.1042/cs0970259
  194. Wong F, Siu S, Liu P, Blendis LM. Brain natriuretic peptide: is it a predictor of cardiomyopathy in cirrhosis. Clin Sci (Lond.). 2001;101:621-628. https://doi.org/10.1042/cs1010621
  195. Wuhrmann F, Maerki HH. Dysproteinaemiue und Paraproteinaemien. Basel, 1963. 168 p.
  196. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992;256:225-228. https://doi.org/10.1126/science.1373522
  197. Yildiz R, Yildirim B, Karincaoglu M, Harputluoglu M, Hilmioglu F. Brain natriuretic peptide and severity of disease in non-alcoholic cirrhotic patients. J Gastroenterol Hepatol. 2005;20:1115-1120. https://doi.org/10.1111/j.1440-1746.2005.03906.x
  198. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20:6008-6016. https://doi.org/10.1093/emboj/20.21.6008
  199. Zhuravlyova LV. Features of left ventricular myocardial remodeling in patients with chronic hepatitis and liver cirrhosis. Modern Gastroenterology. 2005;4:47-50.
  200. Zhuravlyova LV. The state of the renin-angiotensin-aldosterone system in patients with essential hypertension, chronic hepatitis and with their combination. Medicine Today and Tomorrow. 2005;2:35-39.